

Synthetic Applications of the Baylis–Hillman Adducts: A Simple Stereoselective Synthesis of (*E*)-3-(Nitroxymethyl)alk-3-en-2-ones[†]

Deevi Basavaiah.* Rachakonda Suguna Hyma and Nagaswamy Kumaragurubaran

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India Received 7 March 2000; revised 9 May 2000; accepted 25 May 2000

Abstract—First simple, stereoselective synthesis of (E)-3-(nitroxymethyl)alk-3-en-2-ones from Baylis–Hillman adducts (4-hydroxy-3methylenealkan-2-ones) is described. © 2000 Elsevier Science Ltd. All rights reserved.

Certain classes of nitrate esters (RONO₂) are well known for their therapeutic importance as drugs for the treatment of heart and vascular diseases.^{1,2} As part of our research program in nitrate esters we have recently reported a simple and convenient methodology for the synthesis of (1R,2R)and (1S,2S)-2-nitroxycyclohexan-1-ols in enantiomerically pure form.³ In recent years the Baylis–Hillman reaction^{4–6} has attracted the attention of organic chemists as it provides synthetically useful multifunctional molecules which have been successfully employed in various stereoselective processes.^{4–11} To the best of our knowledge, there is no report in the literature for the conversion of the Baylis-Hillman adducts into the corresponding allyl nitrates stereoselectively. With a view that these allyl nitrates may be of interest as potential drugs for vascular and heart diseases and in continuation of our research program¹²⁻¹⁵ on the development of the Baylis-Hillman reaction as a source for stereoselective processes we herein report the first simple stereoselective synthesis of (E)-3-(nitroxymethyl)alk-3-en-2-ones via the reaction of 4-hydroxy-3-methylenealkan-2-ones with concentrated nitric acid (69%).

Recently we have successfully transformed the Baylis-Hillman adducts, i.e. 4-hydroxy-3-methylenealkan-2-ones (1), obtained from a reactive activated alkene, methyl vinyl ketone, into functionalized trisubstituted olefins i.e. (3Z)-3-(bromomethyl)alk-3-en-2-ones and (3Z)-3-(chloromethyl)alk-3-en-2-ones¹⁶ via the treatment with aqueous HBr and HCl respectively. With an objective of utilizing the 4hydroxy-3-methylenealkan-2-ones (1), in various other useful stereoselective transformations we have directed our studies to the transformation of these molecules into 3-(nitroxymethyl)alk-3-en-2-ones (2) with defined stereochemistry. Accordingly we first treated 4-hydroxy-3methylene-4-phenylbutan-2-one (1a) (1 mmol) with 1 mL of conc. HNO₃ (69%) at room temperature. This reaction is instantaneous and provided the desired (E)-3-(nitroxymethyl)-4-phenylbut-3-en-2-one (2a) in 72% yield after usual work up followed by column chromatography. The (E)-stereochemistry was established on the basis of ${}^{1}H$ NMR spectral analysis in comparison with that of (3Z)-3-(halomethyl)alk-3-en-2-ones.¹⁶ This success led us to transform representative 4-hydroxy-3-methylenealkan-2ones (1b-i) into stereochemically pure (E)-3-(nitroxymethyl)alk-3-en-2-ones (2b-i) under similar reaction conditions (Eq. (1); Table 1).

Table 1. Synthesis of (3E)-3-(nitroxymethyl)alk-3-en-2-ones (all reactions were carried out on a 1 mmol scale (alcohols 1a-i) with 1 mL of conc. HNO₃ (69%) at room temperature. Satisfactory spectral [IR, ¹H NMR (200 MHz), ¹³C NMR (50 MHz)] data and elemental analyses were obtained for all molecules (2a-i). ¹H and ¹³C NMR indicate the absence of any (Z)-isomer. (E)-Stereochemistry was established by ¹H NMR spectral analysis.17)

Substrate	R	Product	Yield (%) ^a
1a	phenyl	2a	72
1b	<i>p</i> -tolyl	2b	79
1c	<i>p</i> -isopropylphenyl	2c	77
1d	<i>p</i> -methoxyphenyl	2d	80
1e	<i>p</i> -chlorophenyl	2e	76
1f	o-methoxyphenyl	2f	78
1g	o-chlorophenyl	2g	79
1h	<i>n</i> -propyl	2h	58
1I	n-heptyl	2i	70

^a Isolated yields of the products after column chromatography (silica gel, 4% ethyl acetate in hexanes).

Preliminary results were presented at the American Chemical Society 218th national meeting in New Orleans, USA, August 22-26, 1999 as a poster (poster no. 510).

Keywords: Baylis-Hillman reaction; methyl vinyl ketone; stereoselectivity; (E)-3-(nitroxymethyl)alk-3-en-2-ones. * Corresponding author. E-mail: dbsc@uohyd.ernet.in

The (*E*)-selectivity in the formation of (3E)-3-(nitroxymethyl)alk-3-en-2-ones (**2a**-i) can be explained through the transition state models **A** and **B**. The transition state model **A** is more favored than **B** due to the COMe group having a larger steric effect than the CH₂ONO₂ group.

In conclusion, this methodology describes the first simple stereoselective synthesis of (E)-3-(nitroxymethyl)alk-3-en-2-ones thus demonstrating the synthetic potential of the Baylis–Hillman adducts.

Experimental

Melting points were recorded on a Superfit (India) capillary melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-FT-IR model 5300 or Perkin– Elmer model 1310 spectrometer using samples as neat liquids or in KBr. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) spectra were recorded in deuterochloroform (CDCl₃) on a Bruker-AC-200 spectrometer using tetramethylsilane (TMS, δ =0) as internal standard. Elemental analyses were recorded on a Perkin–Elmer 240C-CHN analyzer. Mass spectra were recorded on a micromass VG 7070H instrument. All the required Baylis–Hillman adducts (starting materials) were prepared by the reaction of the corresponding aldehydes with methyl vinyl ketone in presence of a catalytic amount of DABCO according to the literature procedure.^{18,19}

General procedure for the preparation of (*E*)-3-(nitroxymethyl)alk-3-en-2-ones

Conc. HNO₃ (69%) (1 mL) was added to the Baylis–Hillman adduct (1 mmol) at room temperature and swirled thoroughly for one minute (monitored by TLC). The reaction mixture was immediately diluted with water (5 mL) and extracted with ether (2×5 mL). Combined organic layer was washed with aqueous potassium carbonate solution and dried over anhydrous Na₂SO₄. The solvent was evaporated and the crude product was purified by column chromatography (silica gel, 4% ethyl acetate in hexanes) to afford the pure (*E*)-3-(nitroxymethyl)alk-3-en-2-ones.

(3*E*)-3-(Nitroxymethyl)-4-phenylbut-3-en-2-one (2a). Colorless liquid. Yield: 72%; IR (neat): 1674, 1631 cm⁻¹; ¹H NMR: δ 2.48 (s, 3H), 5.28 (s, 2H), 7.42 (m, 5H), 7.95 (s, 1H); ¹³C NMR: δ 25.41, 66.60, 128.91, 129.24, 130.28, 131.32, 133.47, 148.23, 197.36; MS (m/z): 221 (M⁺); Analysis calcd for C₁₁H₁₁NO₄: C, 59.73; H, 5.01; N, 6.33; found: C, 60.00; H, 4.99; N, 6.35.

(3*E*)-4-(4-Methylphenyl)-3-(nitroxymethyl)but-3-en-2one (2b). Colorless liquid. Yield: 79%; IR (neat): 1670, 1622 cm⁻¹; ¹H NMR: δ 2.40 (s, 3H), 2.48 (s, 3H), 5.31 (s, 2H), 7.29 (m, 4H), 7.92 (s, 1H); ¹³C NMR: δ 21.42, 25.54, 66.80, 129.60, 129.86, 130.62, 130.73, 141.24, 148.76, 197.87; Analysis calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.95; found: C, 61.50; H, 5.54; N, 5.93.

(3*E*)-4-(4-Isopropylphenyl)-3-(nitroxymethyl)but-3-en-2-one (2c). Colorless liquid. Yield: 77%; IR (neat): 1670, 1620 cm⁻¹; ¹H NMR: δ 1.25 (d, 6H, *J*=6.8 Hz), 2.46 (s, 3H), 2.92 (sept, 1H, *J*=6.8 Hz), 5.29 (s, 2H), 7.19–7.41 (m, 4H), 7.88 (s, 1H); ¹³C NMR: δ 23.69, 25.58, 34.08, 66.88, 127.24, 129.72, 130.61, 131.12, 148.40, 151.93, 197.24; Analysis calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32; found: C, 63.91; H, 6.53; N, 5.29.

(3*E*)-4-(4-Methoxyphenyl)-3-(nitroxymethyl)but-3-en-2one (2d). Colorless solid. Yield: 80%; mp: 70–72°C; IR (KBr): 1661, 1622 cm⁻¹; ¹H NMR: δ 2.48 (s, 3H), 3.86 (s, 3H), 5.33 (s, 2H), 6.98 (d, 2H, *J*=8.0 Hz), 7.40 (d, 2H, *J*=8.0 Hz), 7.87 (s, 1H); ¹³C NMR: δ 25.60, 55.53, 67.05, 114.77, 126.16, 129.47, 131.69, 148.07, 161.76,197.12; Analysis calcd for C₁₂H₁₃NO₅: C, 57.37; H, 5.22; N, 5.58; found: C, 57.03; H, 5.21; N, 5.58.

(3*E*)-4-(4-Chlorophenyl)-3-(nitroxymethyl)but-3-en-2one (2e). Colorless liquid. Yield: 76%; IR (neat): 1674, 1626 cm⁻¹; ¹H NMR: δ 2.48 (s, 3H), 5.25 (s, 2H), 7.33 (d, 2H, *J*=8.8 Hz), 7.44 (d, 2H, *J*=8.8 Hz), 7.85 (s, 1H); ¹³C NMR: δ 25.59, 66.39, 129.37, 130.63, 132.07, 136.63, 146.54, 196.91; Analysis calcd for C₁₁H₁₀ClNO₄: C, 51.68; H, 3.94; N, 5.48; found: C, 51.35; H, 3.96; N, 5.50.

(3*E*)-4-(2-Methoxyphenyl)-3-(nitroxymethyl)but-3-en-2one (2f). Colorless liquid. Yield: 78%; IR (neat): 1660, 1621 cm⁻¹; ¹H NMR: δ 2.50 (s, 3H), 3.89 (s, 3H), 5.27 (s, 2H), 6.92–7.11 (m, 2H), 7.25–7.37 (m, 1H), 7.44 (m, 1H), 8.12 (s, 1H); ¹³C NMR: δ 25.61, 55.63, 67.29, 110.98, 120.87, 122.85, 129.85, 131.53, 132.06, 144.22, 157.80, 197.30; Analysis calcd for C₁₂H₁₃NO₅: C, 57.37; H, 5.22; N, 5.58; found: C, 57.61; H, 5.22; N, 5.56.

(3*E*)-4-(2-Chlorophenyl)-3-(nitroxymethyl)but-3-en-2one (2g). Colorless liquid. Yield: 79%; IR (neat): 1672, 1620 cm⁻¹; ¹H NMR: δ 2.50 (s, 3H), 5.19 (s, 2H), 7.34– 7.52 (m, 4H), 8.03 (s, 1H); ¹³C NMR: δ 25.74, 66.50, 127.28, 129.97, 130.05, 131.35, 132.28, 133.25, 134.17, 144.66, 196.92; Analysis calcd for C₁₁H₁₀ClNO₄: C, 51.68; H, 3.94; N, 5.48; found: C, 51.45; H, 3.92; N, 5.49.

(*3E*)-**3**-(Nitroxymethyl)hept-**3**-en-**2**-one (**2h**). Colorless liquid. Yield: 58%; IR (neat): 1678, 1630 cm⁻¹; ¹H NMR: δ 0.99 (t, 3H, *J*=7.0 Hz), 1.48–1.70 (m, 2H), 2.29–2.50 (m, 5H), 5.23 (s, 2H), 7.03 (t, 1H, *J*=7.2 Hz); ¹³C NMR: δ 13.72, 21.86, 25.24, 31.34, 65.34, 132.89, 152.47, 196.88; Analysis calcd for C₈H₁₃NO₄: C, 51.33; H, 7.00; N, 7.48; found: C, 51.28; H, 6.96; N, 7.52.

(*3E*)-3-(Nitroxymethyl)undec-3-en-2-one (2i). Colorless liquid. Yield: 70%; IR (neat): 1676, 1631 cm⁻¹; ¹H NMR: δ 0.87 (t, 3H, *J*=6.3 Hz), 1.15–1.61 (m, 10H), 2.31–2.51 (m, 5H), 5.23 (s, 2H), 7.02 (t, 1H, *J*=7.6 Hz); ¹³C NMR: δ 13.94, 22.54, 25.21, 28.61, 28.94, 29.26, 29.46, 31.62, 65.38, 132.91, 152.36, 196.70; Analysis calcd for C₁₂H₂₁NO₄: C, 59.24; H, 8.70; N, 5.76; found: C, 59.62; H, 8.72; N, 5.73.

Acknowledgements

We thank CSIR (New Delhi) for funding this project. We also thank the UGC (New Delhi) for the Special Assistance Program in Organic Chemistry, in the School of Chemistry, University of Hyderabad. RSH and NK thank UGC (New Delhi) for their research fellowships.

References

- 1. Bron, J.; Sterk, G. J.; Vanden Werf, J. F.; Timmerman, H. Eur. Pat. Appl. EP. 359335, 1990; *Chem. Abstr.* **1990**, *113*, 184719x.
- 2. Blum, S. W.; Quinn, J. B.; Howe, B. B.; Hefner, M. A.; Winbury, M. M. J. Pharmacol. Exp. Ther. **1971**, *176*, 684–691; *Chem. Abstr.* **1971**, *74*, 97581d.
- 3. Basavaiah, D.; Pandiaraju, S.; Muthukumaran, K. *Tetrahedron: Asymmetry* **1996**, *7*, 13–16.
- 4. Drewes, S. E.; Roos, G. H. P. *Tetrahedron* **1988**, 44, 4653–4670.
- 5. Basavaiah, D.; Dharma Rao, P.; Suguna Hyma, R. *Tetrahedron* **1996**, *52*, 8001–8062.
- 6. Ciganek, E. In *Organic Reactions*, Paquette, L. A., Ed.; Wiley: New York, 1997; Vol. 51, pp 201–350.
- 7. Matsumoto, S.; Okubo, Y.; Mikami, K. J. Am. Chem. Soc. 1998, 120, 4015–4016.
- 8. Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. J. Org. Chem. **1998**, 63, 7183–7189.
- 9. Barrett, A. G. M.; Cook, A. S.; Kamimura, A. *Chem. Commun.* **1998**, 2533–2534.

Chamakh, A.; Amri, H. *Tetrahedron Lett.* **1998**, *39*, 375–378.
Lee, H. J.; Seong, M. R.; Kim, J. N. *Tetrahedron Lett.* **1998**, *39*, 6223–6226.

12. Basavaiah, D.; Krishnamacharyulu, M.; Suguna Hyma, R.; Pandiaraju, S. *Tetrahedron Lett.* **1997**, *38*, 2141–2144.

13. Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. Chem. Commun. 1998, 1639–1640.

14. Basavaiah, D.; Krishnamacharyulu, M.; Suguna Hyma, R.; Sarma, P. K. S.; Kumaragurubaran, N. J. Org. Chem. **1999**, 64, 1197–1200.

15. Basavaiah, D.; Kumaragurubaran, N.; Padmaja, K. Synlett 1999, 1630–1632.

16. Basavaiah, D.; Suguna Hyma, R.; Padmaja, K.; Krishnamacharyulu, M. *Tetrahedron* **1999**, *55*, 6971–6976.

17. In the ¹H NMR spectrum of trisubstituted alkenes with ketone group, the vinylic proton *cis* to the carbonyl group appears down-field in comparison with that of the vinylic proton *trans* to the carbonyl group.^{20,21} In the ¹H NMR spectrum of (3*Z*)-3-(halomethyl)alk-3-en-2-ones¹⁶ (R=aryl) the vinylic proton *cis* to the carbonyl group appears at $\approx \delta$ 7.60–7.90 as a singlet. In the case of compounds **2a–2g** (R=aryl) the vinylic proton *appears* at $\approx \delta$ 7.85–8.12 as a singlet. Therefore we have assigned (*E*)-stereo-chemistry to the compounds **2a–2g**. The vinylic proton *cis* to the carbonyl group in the case of (3*Z*)-3-(halomethyl)alk-3-en-2-ones¹⁶ (R=alkyl) appears at $\approx \delta$ 6.80 as a triplet. In the case of compounds **2h–2i** (R=alkyl) the vinylic proton appears at $\approx \delta$ 7.00 as a triplet. Therefore we assigned (*E*)-stereochemistry to the compounds **2h–2i** (R=alkyl) the vinylic proton appears at $\approx \delta$ 7.00 as a triplet. Therefore we assigned (*E*)-stereochemistry to the molecule **2h–2i**.

18. Basavaiah, D.; Gowriswari, V. V. L. *Tetrahedron Lett.* **1986**, 27, 2031–2032.

19. Basavaiah, D.; Gowriswari, V. V. L.; Dharma Rao, P.; Bharathi, T. K. J. Chem. Res. (M) **1995**, 1656–1673.

20. Kocienski, P. J.; Ansell, J. M.; Ostrow, R. W. J. Org. Chem. **1976**, *41*, 3625–3627.

21. Jackman, L. M.; Sternhell, S. 2nd ed; *Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry*; Pergamon: Oxford, 1969; Vol. 5.